Species independence in brain tissue binding using brain homogenates.

نویسندگان

  • Li Di
  • John P Umland
  • George Chang
  • Youping Huang
  • Zhen Lin
  • Dennis O Scott
  • Matthew D Troutman
  • Theodore E Liston
چکیده

Species independence of brain tissue binding was assessed with a large number of structurally diverse compounds using equilibrium dialysis with brain homogenates of seven species and strains (Wistar Han rat, Sprague-Dawley rat, CD-1 mouse, Hartley guinea pig, beagle dog, cynomolgus monkey, and human). The results showed that the fractions unbound of the seven species and strains were strongly correlated with correlation coefficients ranging from 0.93 to 0.99. The cross-species/strain correlations were not significantly different from the interassay correlation with the same species. The linear correlation between Wistar Han and other species had a slope close to 1 and an intercept near 0. Based on orthogonal statistical analysis, no correction is needed for extrapolation of fraction unbound from Wistar Han rat to the other species or strains. Hence, brain tissue binding of Wistar Han rat can be used to obtain binding of other species and strains in drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition and characterization of Erythropoietin binding-proteins in the brain of mice

Objective(s): Erythropoietin (EPO), is a 34KDa glycoprotein hormone, which belongs to type 1 cytokine superfamily. EPO involves in erythrocyte maturation through inhibition of apoptosis in erythroid cells. Besides its main function, protective effects of EPO in heart and brain tissues have been reported. EPO has a critical role in development, growth, and homeostasis of brain. Furthermore EPO h...

متن کامل

In Silico Design and Verification of LAMP-BDNF Chimeric Protein for Presentation of BDNF on the Surface of Exosomes for Drug Delivery Through Blood-Brain Barrier

Background and purpose: The mature form of brain-derived neurotrophic factor (BDNF) binds to BDNF/NT-3 growth factors receptor (Trk-B). This binding leads to activation of Ras–MAPK pathway which is integrated with cell growth and proliferation. The BDNF deficiency is correlated with various diseases and affects aging and miscellaneous. In the present study we aimed to design a chimeric LAMP-BDN...

متن کامل

Reduction in Aluminum Induced Oxidative Stress by Meloxicam in Rat Brain

Background: Non-steroidal anti-inflammatory drugs (NSAID) have been associated with antioxidant property and have been shown to improve the circulating antioxidant status on daily dosing in different inflammatory conditions. The present study was conducted to investigate the antioxidant role of meloxicam in aluminum induced oxidative stress in rat brain. Methods: In the in vivo experiments, Spr...

متن کامل

Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...

متن کامل

Investigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats

Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 39 7  شماره 

صفحات  -

تاریخ انتشار 2011